



# Machine Learning for the Booster Gradient Magnet Power Supply

Jason St. John for the GMPS-Al team

**Accelerator Division** 

Al for Accelerators Workshop - 2022.01.14

#### **Outline**

- Challenge:
  - High-Precision Regulation for the Booster Gradient Magnet Power Supply
- Machine Learning Approach:
  - Data selection & Harvesting Infrastructure
  - Digital Twin: generative LSTM
  - Twin as Environment: Reinforcement Learning for a simple MLP
  - Deployment
    - hls4ml & FPGA bit-precision tests
    - Resource sharing & latency
    - Future steps
- Status

References herein as drawn from pre-print.



#### **Support & Teamwork**



Malachi Schram







Christian Herwig, Diana Kafkes, William A. Pellico, Gabriel N. Perdue, Andres Quintero-Parra, Brian A. Schupbach, Kiyomi Seiya, & Nhan Tran

Gratitude for the use of resources of Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy (DOE), Office of Science, HEP User Facility, especially Fermilab Laboratory Directed Research and Development Program, Project ID FNAL-LDRD-2019-027.

Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359

Pacic Northwest National Laboratory (PNNL) is a multi-program national laboratory operated by Battelle for DOE under Contract No. DE-AC05-76RL01830. Support here from DOE office HEP.



#### **GMPS: Gradient Magnet Power Supply in Booster**

Main bending & focusing magnets of Booster (smallest ring), which *boosts* 0.4 GeV H⁻ from Linac ⇒ 8 GeV H⁺ for a wide array of High Energy Physics



Negative hydrogen ions begin at the checkered flag and flow through the complex in pulses.







Inject at ~400 MeV/c from Linac

Bending magnets need ~102 A to keep 400 MeV beam on orbit

H<sup>-</sup> electrons stripped by passing through foil upon injection — making them H<sup>+</sup>





RF (Radio frequency) accelerator cavities capture beam and accelerate beam from 0.4 GeV/c → 8.0 GeV/c following bending magnets in synchrony.

RF control is outside the scope of this project.





Extract beam at maximum energy.





#### **GMPS AI:** The Need for Improving Regulation



Perturbing influences:

- Recent corrections made
- Other nearby synchrotrons
- Fluctuation of 60 Hz power
- Temperatures, etc

Available data mostly with the current PID regulator Spread in B-field degrades beam quality, degrades repeatability, & contributes to losses



#### **GMPS AI:** Existing PID Circuit Regulation



GMPS PLC
sends control
signals to 4
bending magnet
power supplies



#### **GMPS AI:** Existing PID Circuit Regulation



Reference magnet with B-field transductor

- → Zero-crossing time
- → Minimum field
- → Maximum field



#### **GMPS AI:** Existing PID Circuit Regulation



Human experts adjust target settings from time to time via control system

Also records settings & readings with some unknown latency

Known factors excluded from PID control logic:
Line Voltage variation,
Gallery temperatures, etc.



#### **GMPS AI:** Available time series data



#### **GMPS AI:** Available time series data



We chose to focus on injection

- Simplifies development
- Can generalize once performing well
- Greatest potential for positive impact on science program

**B\_VIMIN** = Setting to achieve

**B:VIMIN** = Prescribed remedy from

PID regulator circuit

**B:IMINER** = 10\*(Setting - obsMax)



#### **GMPS AI:** Selected time series data & dataset cleaning

Initial selection by Subject Matter Experts: 54 time series (out of 200k+ devices) For small time window with constant settings, further narrowed to these five.

→ Biggest perturbation from MI current **I:MDAT40** (Confirmed by Granger causality study vs "loss" **B:IMINER**)

Post-processed data: At every cycle, take most recent value for each device. (Handles asynchronous timestamps.)

**B:LINFRQ** = 60 Hz line frequency error [mHz]

**I:IB** = MI lower bend current [A]

**I:MDAT40** = MDAT measured MI current [A]

**B VIMIN** = Setting to achieve\*

**B:VIMIN** = Prescribed remedy from

PID regulator circuit

**B:IMINER** = 10\*(Setting - obsMax)



#### GMPS AI: Generative Multivariate LSTM as Digital Twin

Trained an LSTM to accurately predict next time step.



In "Ouroboros" configuration, this reproduces the learned multivariate dynamics, providing an offline environment to train a control agent through Reinforcement Learning.





Long Short-Term Memory:
A family of Recurrent
Neural Network
architectures featuring an
hidden state, giving ability
to learn long-timescale
behaviors from data

Guillaume Chevalier - Own work, CC BY 4.0, https-//commons.wikimedia.org/w/index.php?c urid=71836793.png



#### GMPS AI: Generative Multivariate LSTM as Digital Twin

Results reflect behavior in data remarkably well.



**B:VIMIN** = Prescribed remedy from PID regulator circuit



**B:IMINER** = 10\*(Setting - obsMax)



# **GMPS AI:** Digital Twin as RL Environment



With LSTM providing environment, trained an MLP agent to tweak **B:VIMIN** prescription each timestep

- Reward function: neg. abs. error = -|B:IMINER|
- Q-learning @ 50 timestep episodes
  - Double DQN (target & policy model distinct)
  - 32-experience (random) to update policy model
  - ε-greedy decay factor 0.9995 (min: 0:0025)
  - Discretized options to change B:VIMIN:
     0 (no change), ±0.0001, ±0.005, and ±0.001.
  - 3 layers of 56 ReLU nodes





# **GMPS AI:** Digital Twin as RL Environment



With LSTM providing environment, trained an MLP agent to tweak **B:VIMIN** prescription each timestep

- Reward function: neg. abs. error = -|B:IMINER|
- Q-learning @ 50 timestep episodes
  - Double DQN (target & policy model distinct)
  - 32-experience (random) to update policy model
  - ε-greedy decay factor 0.9995 (min: 0:0025)
  - Discretized options to change B:VIMIN:
     0 (no change), ±0.0001, ±0.005, and ±0.001.
  - 3 layers of 56 ReLU nodes





#### GMPS AI: Deployment on FPGA: Bit precision

7119 trained floats: How few bits can we use?

| Layer | Outputs | Activation | Parameters | MACs |
|-------|---------|------------|------------|------|
| 1     | 56      | ReLU       | 336        | 280  |
| 2     | 56      | ReLU       | 3192       | 3136 |
| 3     | 56      | ReLU       | 3192       | 3136 |
| 4     | 7       | Linear     | 399        | 392  |
| Total |         | • • •      | 7119       | 6944 |

99% of weights are >2<sup>-9</sup>

(Multiply-and-Accumulate) on 1518 available DSP slices



### GMPS AI: Deployment on FPGA: Bit precision

7119 trained floats: How few bits can we use?

| Layer | Outputs | Activation | Parameters | MACs |
|-------|---------|------------|------------|------|
| 1     | 56      | ReLU       | 336        | 280  |
| 2     | 56      | ReLU       | 3192       | 3136 |
| 3     | 56      | ReLU       | 3192       | 3136 |
| 4     | 7       | Linear     | 399        | 392  |
| Total |         | • • •      | 7119       | 6944 |

- 99% of weights are >2<sup>-9</sup>
- >99.5% of actions are the same when using 14 bits to encode non-integer part of the weights
- $\Rightarrow$  1 (sign) + 5 (int) + 14 (fract.) = 20 bits

(Multiply-and-Accumulate) on 1518 available DSP slices



## GMPS AI: Deployment on FPGA: Resources & Latency

Making it real: Keras model → Intel Arria 10

hls4ml to convert Keras models to High-Level Synthesis for FPGAs

DSP: Digital Signal Processor

(carries out MACs)

BRAM: Block RAM

MLAB: Memory Logic Array Block

ALM: Adaptive Logic Module

(simple arithmetic & logic operations)

Register: temporary value storage sites

|              | 1    | 1    | 1    |                  | 1                |                     |
|--------------|------|------|------|------------------|------------------|---------------------|
| reuse factor | DSP  | BRAM | MLAB | ALM              | Register         | Latency             |
| 128          | 130  | 114  | 229  | $21.4\mathrm{k}$ | 51.2 k           | $2.8\mu\mathrm{s}$  |
| 224          | 74   | 100  | 1420 | $40.2\mathrm{k}$ | $78.3\mathrm{k}$ | $4.1\mu\mathrm{s}$  |
| 1568         | 26   | 38   | 357  | $24.9\mathrm{k}$ | $54.9\mathrm{k}$ | $17.2\mu\mathrm{s}$ |
| Available    | 1518 | 2713 |      | 427 k            | $1.7\mathrm{M}$  |                     |

Reuse factor per layer = GCD of global reuse factor w.r.t. (inputs \* outputs)

Tradeoff: Speed vs. Resource Usage Efficiency



#### **GMPS AI: Status**

- FPGA on dev board, talking to a server with GPU
  - First model loaded, replicates expected responses (Brian Schupbach)
  - Logging capabilities being added for dev board
    - Goal: Address data logger timestamp quality issue for Al@AD
- Found our online learning approach: Twin Delayed DDPG (T3D)
  - Control policy (neural net) running on chip, while an upgrade candidate is being developed. Gradual changeover.
  - Implies small change of neural net architecture (discrete continuous), but retraining from scratch is fine
- Preparing for first real-time running
  - without settings (only log recommended actions)
  - then with settings. Expect engineering review.



#### **GMPS AI:** Future Steps

- Computing infrastructure for automated, continuous learning
  - Logging model parameters, performance, etc. also automatically, with hooks for human oversight
- Expanding dataset ~x1000 for LSTM
  - (Now the computing gets serious! ExaLearn.)
- Room for more sophisticated control agents. (So far <6% resource usage.)</li>
  - Bigger MLP (offset with higher reuse factor?)
  - Parallel Ensembles voting
  - Data-driven model with Uncertainty Quantification (Environment & Agent)



#### **Details about this project**

Proof-of-concept pre-print paper aimed at Accelerator Physicists:

[2011.07371] Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster

Dataset used for these results, with ethical & technical Data Sheet:

**BOOSTR: A Dataset for Accelerator Reinforcement Learning Control** 

#### Coming soon:

~x100 dataset on zenodo.org and in review with Nature: Scientific Data



# Thank you!



#### **GMPS AI:** PID control logic

Based on history of current minimum error

generate cumulative time series (with %=7.535008e-5)

Beta: 
$$\beta_t = \beta_{t-1} + \forall B:IMINER_t$$

Now prescribe (with  $\alpha$ =8.5e-2)

$$B:VIMIN_{t+1} = B_VIMIN_t - \alpha B:IMINER_t - \beta_t$$

**B\_VIMIN** = Setting to achieve

**B:VIMIN** = Prescribed remedy from

PID regulator circuit

**B:IMINER** = 10\*(Setting - obsMax)

